• eyetracking@ethz.ch
  • +41 44 633 71 59

ACM SIGSPATIAL 2025

  • -

ACM SIGSPATIAL 2025

Last week, Lin Che had the pleasure of attending ACM SIGSPATIAL 2025, held in Minneapolis.

He presented the paper “๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐”๐ซ๐›๐š๐ง ๐‹๐š๐ง๐ ๐”๐ฌ๐ž ๐Œ๐š๐ฉ๐ฉ๐ข๐ง๐  ๐ฐ๐ข๐ญ๐ก ๐’๐ญ๐ซ๐ž๐ž๐ญ ๐•๐ข๐ž๐ฐ ๐‚๐จ๐ง๐ญ๐ซ๐š๐ฌ๐ญ๐ข๐ฏ๐ž ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐š๐ง๐ ๐š ๐†๐ž๐จ๐ ๐ซ๐š๐ฉ๐ก๐ข๐œ๐š๐ฅ ๐๐ซ๐ข๐จ๐ซ”

In this work, we proposed the first unsupervised approach for urban land use classification and mapping based on street view images. Contrastive Clustering with Geographical Priors (CCGP) framework enhances clustering performance and ensures greater spatial coherence of the resulting maps.

๐Ÿ“ Paper: https://arxiv.org/abs/2504.17551
๐Ÿ’ป Code: https://github.com/lin102/CCGP